
 1

CNC FOR EDM MACHINE TOOL – HARDWARE STRUCTURE

Ioan Lemeni

Computer and Communication Engineering Department
Faculty of Automation, Computers and Electronics

University of Craiova
13, A.I. Cuza, Craiova, Romania

Email: Ioan.Lemeni@comp-craiova.ro

Abstract: The main purpose of this paper is to present a
cheap solution for retrofitting an EDM machine tool.
Because the electronic blocks for such machines are
manufacturer specific, it is not possible to mix blocks
from different manufacturers. Therefor it is not possible
to buy a single block, but whole kits are available on the
market. Unfortunately this solution causes high costs. If,
in such a structure, a single block must be replaced, is
cheaper to design it again. In this paper it is present the
hardware solution for the CNC block of the EDM
machine tool ELEROFIL-10.

Key words: EDM, CNC, retrofit, linear encoder,
interface, PALs, VHDL

1. INTRODUCTION

Wire EDM (Electrical Discharge Machining) is a
method to cut conductive materials with a thin electrode
that follows a programmed path. The electrode is a thin
wire. Typical diameters range from 0.1-3.0 mm although
smaller and larger diameters are available. The hardness
of the work piece material has no detrimental effect on
the cutting speed. There is no physical contact between
the wire and the part being machined. Rather, the wire is
charged to a voltage very rapidly. This wire is
surrounded by de-ionized water. When the voltage
reaches the correct level, a spark jumps the gap and
melts a small portion of the work piece. The de-ionized
water cools and flushes away the small particles from the
gap.

In Romania, before 1989, a family of EDM machine
tools has been produced. One member of this family was
ELEROFIL-10, produced by “Electotimiş-Timişoara”
company in 1989. A significant number of units have
been installed in many Romanian factories and the
results were satisfactory enough. Unfortunately, after 10
years of running, the reliability of these machines
diminished drastically.

Instead of buying a new machine tool is worth to
consider the retrofit solution. It has become common
place in manufacturing industry to update the control
technology on machine tools. The benefit of retrofitting
depends of the size and type of the machine being
retrofitted. On average, retrofitting a good machine is
less than 50% of the cost of a new machine of the same
size and type.

ELEROFIL 10 machine tool is composed of the
following parts:

– Mechanical frame with two stepping motors and two
linear encoders.

– Spark generator, ROGIF.
– Conventional and stepping motors power controller.
– CNC (Computer Numerical Control) NUMEROM

450. This CNC is in fact a CORAL minicomputer
extended with several I/O interface cards.

In the last years 99% of the machine breakdowns was
due to the CORAL minicomputer; this is the main motif
for retrofitting. So, the cheapest way to retrofit
ELEROFIL-10 is to replace the NUMEROM 450 with a
new CNC. Unfortunately, there is no available CNC on
the market to interface with the old spark generator,
ROGIF, and with the stepping motors. A solution still
exists: to buy a retrofit kit. Such a kit includes CNC,
spark generator, linear encoders, motors and their
drivers. This is the best solution from technical point of
view, but its cost is too high: about $30K. We mention
that a new machine tool of the same performance costs
about $50K. Due to the relative high cost of the kit, the
best solution, from economic point of view, is to design
a CNC which interfaces with all existing equipment:
ROGIF, linear encoders, stepping motors power
controller and conventional. The cost of such a solution
is only $5K.

This cheap solution is NUMERIC-01: a PC-based
CNC designed as a direct substitute for the old CNC,
NUMEROM-450. Is worth to mention that all necessary
hardware was embedded in only two additional boards,
the software has been rewritten so it emulates perfectly
the original NUMEROM software and new graphic
features have been added.

2. HARDWARE OVERVIEW

Nowadays a PC has more than enough processing
power to carry out all the calculations involved by the
interpolation algorithm and can be transformed into a
CNC very easy if the appropriate interfaces are added.
In ELEROFIL-10 case this is a simple task because most
of the external signals are digital, so a general-purpose
acquisition board, with an appropriate number of digital
inputs and outputs, should be enough. But the acquisition
boards available on the market don’t deal well with
many interrupt sources.

It would be very difficult, if not impossible, to write
the software without interrupt support. That is way a
specialized hardware interface was designed.

 2

Figure 1

The hardware structure is one of an acquisition
board to witch two extra blocks was added. The
hardware block diagram is shown in figure 1. Because
some external signals are in the 0-24V range, it is
necessary to convert them to TTL, because galvanic
isolation was mandatory, it wasn’t enough room to
embed all the hardware on a single ISA card. That is way
the hardware implementation has been carried out on
two cards. The ISA card insures the bus interface and
defines a local bus used to connect any other block. This
bus goes to the IO card via a flat ribbon. Due to the
distance between the two cards transceivers and drivers
are endowed on both sides.

The input signals are converted, through
photocouplers, to TTL levels and then wired to input
ports. The signal from the spark generator is forwarded
directly to the interrupt block on the ISA card. The
frequency of this signal encodes the mean voltage value
at witch sparks occur. The output signals are latched in
output ports, and then passed through photocouplers.
After the photocoupler stage these signals are used to
command the power drivers. The ISA bus interface, the
local bus, the inputs block and the outputs block have
nothing special and won’t be further detailed. The
original part of this paper concerns the processing of the
linear encoders signals

3. Encoders Interface

ELEROFIL-10 is a machine tool with two axes. Each
axis is endowed with a linear encoder. The encoder is of
incremental type, with reference marks from centimeter
to centimeter. The glass scale is mounted on the machine
frame while the encoder head moves as the axis moves.
The position is Gray coded on two bits (figure 2). When
the head moves, for instance, from left to right, the
sequence of B and A signals is 00, 01, 11, 10, and so on.
When the head moves in opposite sense (right to left) the
sequence is 00, 10, 11, 01. Any transition means a
movement of exactly 1µm. The encoder is 1m long, so
the position is in the 0-1,000,000 range.

Figure 2

The CNC must know the current position in any
moment. In order to keep track of the position, a 20
bits counter is necessary for each axis. This counter will
increment or decrement on the transitions of B and A
signals. On any axis the maximum speed is 1mm/s, so
the maximum transitions frequency of either A or B is
1kHz.

These counters can be implemented hardware or
software. The hardware solution implies too much
circuitry: two counters on 20 bits each, six 3-state latches
and an automaton to solve the exclusive access to the
counters. A counter is updated on either B or A
transition and is read when the software needs the
position. A misread can occur if the counter is
incremented or decremented while is being read.

 Because the hardware solution for the counters
means too many ICs, it was decided to implement them
in software. The hardware structure used is shown in
figure 3.

The edge detector (FSM1) has to detect any edge
(rising or falling) of both B and A. If an edge has been
detected, the ACTIVE signal becomes logic ‘1’. This
signal is used to determine which axis has an active
pulse. This block also computes the sense. The sense is
logic ‘0’ if the sequence of B and A is ..-> 00 -> 01 ->
11 -> 10->.. and logic ‘1’ for the sequence ..-> 00 -> 10 -
> 11 -> 01->. The SENSE signal is useful for the

 3

software routine: it tells to the software counter to
increment or decrement.

Basically, the detector is implemented as a four
states FSM. For each possible value of the B and A
inputs there is a corresponding state: if B&A are 00, the
machine is in state S00, if they are 01 the state will be
S01 and so on. If the B&A inputs don’t change, the state
won’t change, the ACTIVE output will be ‘0’ and the
SENSE won’t care. When the inputs change, the state
will change and ACTIVE will be ‘1’, as in figure 4. The
SENSE value was discussed before.

Figure 4

Actually, FSM1 is not implemented exactly as in
figure 4. The transitions from one state to the other
depend on the READY signal: when READY is inactive,

the machine can’t change its state. In figure 5 is
presented only the S00 state of the modified machine:

Figure 5

The role of READY signal will be discussed when
FSM2 will be detailed.

Supplementary, this block also determines if an
error has occurred. For example, the sequence 00->11 of
BA is an error. This sequence never appears on the linear
encoder. When an error has been detected the ERROR
signal becomes logic ‘1’.

FSM1 was implemented with a PAL22V10 using
OrCAD 9 environment. The VHDL code is given in the
sequel:

Library ieee;
Use ieee.std_logic_1164.all;
Use ieee.numeric_std.all;

ENTITY masura is
 PORT (

BCLK : IN STD_LOGIC; --ISA Clock
BRST : IN STD_LOGIC; --ISA Reset
A,B, NUL : IN STD_LOGIC;

 READY : IN STD_LOGIC;

 ACTIV, SENS : OUT STD_LOGIC;

 ERR : OUT STD_LOGIC;
 BNUL : OUT STD_LOGIC;
 Abuf, Bbuf : BUFFER STD_LOGIC;
 state : BUFFER STD_LOGIC_VECTOR

(2 downto 0)
);
END masura;

ARCHITECTURE behavior OF masura IS
 signal nextstate: STD_LOGIC_VECTOR(2 downto
0);
BEGIN

--synchronize A,B,NUL pulse
 process(BCLK)
 begin
 if BCLK='1' and BCLK'event then
 Abuf<=A; Bbuf<=B; BNUL<=NUL;
 end if;
 end process;

 -- sequential state machine, flipflops
 process (BCLK) -- state machine, flipflops
 begin
 if BCLK='1' and BCLK'event then
 if BRST='0' then state<='0'&B&A;
 else state<=nextstate;
 end if;
 end if;
 end process;

 process (state, Abuf, Bbuf, READY)
 begin
 ACTIV <='0'; SENS <='0'; ERR<='0';
 case (state) is
 when "000" => --B=0, A=0
 nextstate <= "000";
 case (Bbuf & Abuf & READY) is
 when "000" | "001"=> null;
 when "010" => ACTIV <= '1';
 when "011" => ACTIV <= '1';

Figure 3

 4

nextstate<="001";
 when "100" => ACTIV <= '1'; SENS <= '1';
 when "101" => ACTIV <= '1'; SENS <= '1';

 nextstate <= "010";
 when others =>nextstate <= "100";
 end case;

 when "001" => --B=0, A=1
 nextstate <= "001";
 case (Bbuf & Abuf & READY) is
 when "010" | b"011"=> null;
 when "110" => ACTIV <= '1';
 when "111" => ACTIV <= '1';

nextstate<="011";
 when "000" => ACTIV <= '1'; SENS <= '1';
 when "001" => ACTIV <= '1'; SENS <= '1';

 nextstate <= "000";
 when others =>nextstate <= "100";
 end case;

 when "011" => --B=1, A=1
 nextstate <= "011";
 case (Bbuf & Abuf & READY) is
 when "110" | "111"=> null;
 when "100" => ACTIV <= '1';
 when "101" => ACTIV <= '1';

nextstate<="010";
 when "010" => ACTIV <= '1'; SENS <= '1';
 when "011" => ACTIV <= '1'; SENS <= '1';
 nextstate <= "001";
 when others =>nextstate <= "100";
 end case;

 when "010" => --B=1, A=0
 nextstate <= "010";
 case (Bbuf & Abuf & READY) is
 when "010" | "011"=> null;
 when "000" => ACTIV <= '1';
 when "001" => ACTIV <= '1';

nextstate<="000";
 when "110" => ACTIV <= '1'; SENS <= '1';
 when "111" => ACTIV <= '1'; SENS <= '1';
 nextstate <= "011";
 when others => nextstate <= "100";
 end case;

--Error
 when "100" =>
 ERR<='1'; nextstate <= "100";
 if READY='0' then null;
 else
 case (Bbuf & Abuf) is
 when "00" => nextstate <= "000";
 when "01" => nextstate <= "001";
 when "10" => nextstate <= "010";
 when "11" => nextstate <= "011";
 when others => nextstate <="100";
 end case;
 end if;
 when others => nextstate <= "100";

 end case; --status
 end process;
 END behavior;

The FSM2 block interfaces the Edge&Sense
detector with the local bus. FSM2 interacts with FSM1
as follows:
1. A and B don’t change, so FSM1 remains in the state

corresponding to the A and B signals. ACTIV and
ERR signals are logic ‘0’. FSM2 waits for either
ACTIV or ERR to become logic ‘1’. READY output
from FSM2 to FSM1 is inactive.

2. Either A or B changes. Because READY is inactive,
FSM1 won’t change its state, but ACTIV will
become logic ‘1’.

3. FSM2 catches this event and latches ACTIV, SENS
and ERR. This action is controlled by the WR
signal. On the same clock pulse it activates
READY, allowing FSM1 to change its state. It also
activates MINT signal (measure interrupt) in order
to issue an interrupt.

4. FSM1 changes its state according to A and B values.
As a consequence ACTIV becomes ‘0’. FSM1
continues to monitor A and B signals, while FSM2
waits for the software to read the latched values of
ACTIV, SENS and ERR. The latched values are
called A for ACTIV, S for SENS and E for ERR.
These latches are organized as an input port (fig.3).
When the processor reads this port (status port) the
RDPML signal becomes ‘0’.

5. After the software has read the port, FSM2 revert in
the initial states.

A problem could arise the software is not fast enough to
read the measure port. Suppose the following sequence
of events:
1. FSM1 has an event on A or B and activates ACTIV.

2. FSM2 activates READY, latches the event and
waits for the software to read the status port.

3. FSM1 changes its states according to A and B
values.

4. Another event occurs on A or B. FSM1 activates
again the ACTIV signal but cannot change its state
because FSM2 still waits.

5. If a second event occurs appears on either A or B,
before the status port is read, FSM1 will enter into
the error state because this automaton was design to
report a single event, not two.

As was state before, the maximum transitions frequency
on each axis is 1kHz. So, after an interrupt was issued,
the status port must be read in 1ms. Concluding on this
subject, the longest uninterruptible instruction sequence
must execute in maximum 1ms.
 The FSM2 sequential machine was implemented
with a single PAL22V10 as in figure 6.

V

MBV2

BCLK
BRST

ACTIV

RDPML

MINT

READY

WR

STATE[1..0]

ERR

Z

RDPML

ACTIV

RESULT
DATA0

DATA1

SEL

U1

mux2to1

PLDPIN = 1

Z

RDPML

U6
dff1

DATA

CLOCK

S
S

E
T

A
C

LR

Q

PLDPIN = 15,16

Z

BRST

WR

BCLK

READY

U4
GND

RESULT
DATA0

DATA1

SEL

U8

mux2to1

ACTIV

WR
PLDPIN = 3

PLDPIN = 2

Z

A

ERR PLDPIN = 5

MINT

U2
dff1

DATA

CLOCK

S
S

E
T

A
C

LR

Q

STATE[1:0]

BCLK

S

U10

TRI1

RESULT
DATA0

DATA1

SEL

U5

mux2to1

Z

PLDPIN = 23

PLDPIN = 4

U3

TRI1

BCLK

E

Z

PLDPIN = 22

PLDPIN = 20

WR

PLDPIN = 21

RDPML

PLDPIN = 19

Z

SENS

BCLK

RDPML

ERR

U9
dff1

DATA

CLOCK

S
S

E
T

A
C

LR

Q

U7

TRI1

WR

BCLK

PLDPIN = 6

Figure 6

The description has a schematic par and a VHDL part.
Although the whole description could be done in VHDL,
this approach has the advantage of clarity. The schematic

 5

part depicts how the ACTIV, SENS and ERR signal are
processed. As was said before these signals have to be
latched on the raising edge of the WR signal. Because
the implementation is carried out with a single
PAL22V10, a single clock source is available. The signal
chosen as clock was the ISA BCLK signal. In order to
latch these signals three flip-flops with chip enable were
used. Each flip-flop was implemented with a MUX2 and
a regular D flip-flop.The control part, with comments, is
given in the sequel:

Library ieee;
Use ieee.std_logic_1164.all;
Use ieee.numeric_std.all;

ENTITY MBV2 is
 PORT (
 BCLK : IN STD_LOGIC; --ISA clock
 BRST : IN STD_LOGIC; --ISA reset
 ACTIV, ERR : IN STD_LOGIC;
 RDPML : IN STD_LOGIC;

 MINT : OUT STD_LOGIC;
 READY : OUT STD_LOGIC;
 WR : BUFFER STD_LOGIC;
 STATE : BUFFER STD_LOGIC_VECTOR (1 downto 0)
);
END MBV2;

ARCHITECTURE behavior OF MBV2 IS
 signal nextstate: STD_LOGIC_VECTOR (1 downto
0);

BEGIN
 process (BCLK)
 begin
 if BCLK'event and BCLK='1' then
 if BRST='0' then state<="00";
 else state <= nextstate;
 end if;
 end if;
 end process;

 process (state,ACTIV,ERR,RDPML)
 begin
 WR<='0'; READY<='0'; MINT<='1';
 case state is
 when "00" => --wait for ACTIV or ERROR
 nextstate<="00";

-- If a status port read is in progress, wait till ends.
--Normally, it is not possible to have a port read before
--the interrupt is issued, but this statement was added
--as a precaution.
 if RDPML='0' then null;
 elsif ACTIV ='1' or ERR = '1' then
 WR<='1'; READY<='1'; MINT<='0';
 nextstate<="01";
 end if;

 when "01" => --wait for status port read
 --to begin
 if RDPML='1' then nextstate<="01";
 else nextstate<="10";
 end if;

 when "10" => --wait for port read
 --to end
 if RDPML='0' then nextstate<="10";
 else nextstate<="00";
 end if;

 when others => nextstate<="00";
 end case;
 end process;

END behavior;

4. CONCLUSIONS

This paper presents the hardware structure of a CNC,
specially design to replace an old CNC, NUMEROM-
450 CNC. The new CNC, NUMERIC-01, has an
industrial PC as core. Two specialized board were
designed: an ISA board and an external board,
connected with the first one through a flat ribbon. The
hardware structure is one of an acquisition board, with a
specialized block that interfaces the linear encoders with
the system. In order to reduce the number of ICs, PALs
were used. The logic embedded in these devices was
described in VHDL. The whole logic design, namely
schematic capture, VHDL compilation and PAL
implementation, simulation, PCB design was carry out
with OrCAD 9.1 package.

REFERENCES

Basker J., VHDL Primer, third edition, Prentice

Hall,1989
Cottet, J.,J., Les circuits logiques Programmables

(PLD), URL: http://www.ac-orleans-tours.fr/sti-
gel/Pld/Orcad_express.htm

M.I.C.M.-C.I.E.T.A I.P.A TcT, Echipament de
comandă numerică NUMEROM-450. Scheme
electice, 1989

OrCAD Company, OrCAD Express User’s Guide

